ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2022 ANS Winter Meeting and Technology Expo
November 13–17, 2022
Phoenix, AZ|Arizona Grand Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
September 2022
Nuclear Technology
Fusion Science and Technology
August 2022
Latest News
Next for nuclear: Energy arbitrage
Can nuclear power plants prosper in the grid of 2030 or 2035, when new wind and solar farms will make electricity prices even more volatile? Can plants install energy storage that will help them keep running at full power, 24/7, to ride out times of surplus and sell their energy only when prices are high?
J. E. M. Saxby, Anil K. Prinja, M. D. Eaton
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 1-25
Technical Paper | dx.doi.org/10.1080/00295639.2017.1367569
Articles are hosted by Taylor and Francis Online.
The time and phase-space dependent backward master equation is used to develop and numerically solve a coupled system of transport equations for the probability distribution of the neutron number in subregions of a spherically symmetric, reflected, subcritical plutonium sphere. The number distributions are computed for a single initial neutron injected into the assembly and localized in phase space as well as in the presence of a uniformly distributed spontaneous fission source in the fissile region. A standard multigroup, discrete ordinates scheme with second-order spatial and fully implicit time discretization proved sufficiently accurate for this application. The results presented show complex behaviors arising from the material interface and spectral effects due to neutron slowing down that cannot be encapsulated in a lumped model. Additionally, low-order spatial moments were computed both by averaging the number distributions of finite order and directly solving the transport equations for the moments using the same numerical scheme. While generally excellent agreement is observed between the two approaches, the truncation order has a noticeable effect on the accuracy of the higher moments that are computed using the number distributions.