ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
J. E. M. Saxby, Anil K. Prinja, M. D. Eaton
Nuclear Science and Engineering | Volume 189 | Number 1 | January 2018 | Pages 1-25
Technical Paper | doi.org/10.1080/00295639.2017.1367569
Articles are hosted by Taylor and Francis Online.
The time and phase-space dependent backward master equation is used to develop and numerically solve a coupled system of transport equations for the probability distribution of the neutron number in subregions of a spherically symmetric, reflected, subcritical plutonium sphere. The number distributions are computed for a single initial neutron injected into the assembly and localized in phase space as well as in the presence of a uniformly distributed spontaneous fission source in the fissile region. A standard multigroup, discrete ordinates scheme with second-order spatial and fully implicit time discretization proved sufficiently accurate for this application. The results presented show complex behaviors arising from the material interface and spectral effects due to neutron slowing down that cannot be encapsulated in a lumped model. Additionally, low-order spatial moments were computed both by averaging the number distributions of finite order and directly solving the transport equations for the moments using the same numerical scheme. While generally excellent agreement is observed between the two approaches, the truncation order has a noticeable effect on the accuracy of the higher moments that are computed using the number distributions.