ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Eric Lukosi
Nuclear Science and Engineering | Volume 188 | Number 3 | December 2017 | Pages 294-302
Technical Paper | doi.org/10.1080/00295639.2017.1367248
Articles are hosted by Taylor and Francis Online.
This paper presents the computational performance of microfluidic channels (MFCs) within a semiconductor detector to monitor changes in the elemental and isotopic composition of a UOX pressurized water reactor used nuclear fuel dissolved in a KCl/LiCl molten salt. The results indicate that the use of MFC limits alpha energy loss sufficiently enough to use energy windowing techniques in spectral analysis. It was found that elemental and isotopic changes as low as 1% may be feasible, with the time to detection (TTD) ranging from seconds to hours. The TTD is inversely dependent on the number of MFCs within the sensor and the activity of the element/isotope undergoing concentration transients.