ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Senate EPW Committee to hold Nieh nomination hearing
Nieh
The Senate Environment and Public Works Committee will hold a nomination hearing Wednesday for Ho Nieh, President Donald Trump’s nominee to serve as commission at the Nuclear Regulatory Commission.
Trump nominated Nieh on July 30 to serve as NRC commissioner the remainder of a term that will expire June 30, 2029, as Nuclear NewsWire previously reported.
Nieh has been vice president of regulatory affairs at Southern Nuclear since 2021, though since June 2024 he has been at the Institute of Nuclear Power Operations as a loaned executive.
A return to the NRC: If confirmed by the Senate, Nieh would be returning to the NRC after three previous stints totaling nearly 20 years.
Woosong Kim, Woong Heo, Yonghee Kim
Nuclear Science and Engineering | Volume 188 | Number 3 | December 2017 | Pages 207-245
Technical Paper | doi.org/10.1080/00295639.2017.1354592
Articles are hosted by Taylor and Francis Online.
This paper introduces the albedo-corrected parameterized equivalence constants (APEC) method, a new method for correcting the homogenized two-group cross sections of the pressurized water reactor (PWR) fuel assemblies (FAs) by taking into account the neutron leakage. First, an analysis was performed of the position dependence of the assembly-homogenized two-group cross sections in an actual core. In order to eliminate the two-group cross-section error in the conventional homogenization method, the APEC method is proposed which parameterizes the homogenized two-group cross sections in terms of an integrated albedo information current-to-flux ratio (CFR). Also, small color-set models are introduced to obtain physically meaningful CFR boundary conditions for the APEC method and their characteristic features are discussed. In the case of FAs with neighboring baffle, slightly modified APEC functions are introduced to deal with the strong spectral interaction between the FA and the baffle-reflector region in PWRs. In addition, an improved APEC function is developed by explicitly accounting for the neutron spectrum change in a FA in terms of a spectral index defined as the fast-to-thermal-flux ratio. For the test of the proposed APEC functions, a small modular reactor (SMR) core was chosen and comparative analyses were performed in detail for each type of homogenized two-group cross section. In this work, the transport lattice code DeCART2D was used for the analysis of the benchmark problems. In the comparative analyses, the APEC-corrected cross sections were compared with the conventional two-group constants and reference ones for several representative FAs. The APEC algorithm was implemented into an in-house nodal expansion method code in conjunction with a partial-current CMFD (p-CMFD) acceleration. The nodal analyses of an SMR initial core and a large PWR core were performed to evaluate the performance of the APEC method. In order to show the generality of the APEC functions obtained from lattice calculations, several modified core configurations were also analyzed. In addition, a rodded SMR initial core problem was also analyzed to test the APEC method in an extremely abnormal core configuration. The nodal analyses showed that the APEC method can improve the nodal accuracy significantly with a small amount of additional computing cost.