ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
NN Asks: What did you learn from ANS’s Nuclear 101?
Mike Harkin
When ANS first announced its new Nuclear 101 certificate course, I was excited. This felt like a course tailor-made for me, a transplant into the commercial nuclear world. I enrolled for the inaugural session held in November 2024, knowing it was going to be hard (this is nuclear power, of course)—but I had been working on ramping up my knowledge base for the past year, through both my employer and at a local college.
The course was a fast-and-furious roller-coaster ride through all the key components of the nuclear power industry, in one highly challenging week. In fact, the challenges the students experienced caught even the instructors by surprise. Thankfully, the shared intellectual stretch we students all felt helped us band together to push through to the end.
We were all impressed with the quality of the instructors, who are some of the top experts in the field. We appreciated not only their knowledge base but their support whenever someone struggled to understand a concept.
Vikas Pandey, Suneet Singh
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 187-197
Technical Paper | doi.org/10.1080/00295639.2017.1350003
Articles are hosted by Taylor and Francis Online.
The nonlinear stability analysis of an advanced heavy water reactor (AHWR) is performed to investigate global stability. The global stability perspective predicts the exact stability boundary of the system, which is valid for small as well as large disturbances in the system. Recently, the local or linear stability boundary and bifurcation of limit cycles has been discussed for an AHWR. However, the studies were not sufficient to predict global stability of the system. In this work, advanced bifurcation analysis is carried out for an AHWR, which unfolds multistable or unstable states. The region of multistability is observed due to the presence of steady states and multiple limit cycles. The global stability boundary is marginally away from the local stability boundary, the region beyond which the global stability boundary is safe for operation due to the nonexistence of nonlinear phenomena, such as limit cycles. The local stability boundary is basically a Hopf bifurcation boundary as limit cycles (i.e., nonlinear phenomena) emerge from these points. Subcritical or supercritical Hopf bifurcations excite unstable limit cycles (ULCs) or stable limit cycles (SLCs), respectively, and these limit cycles end on the global stability boundary. The subcritical Hopf bifurcation is considered as hard or dangerous bifurcation due to the presence of ULCs in the linearly stable region, which gains stability on the global stability boundary and in which SLCs surround ULCs. Therefore, a region of bistability between the local and global stability boundary is present for subcritical Hopf. The supercritical Hopf is generally considered as the soft and safe bifurcation because of SLCs in the linearly unstable region. Due to this fact, it is assumed that in the supercritical Hopf region the global and local stability boundaries are the same. However, in this work ULCs in the linearly stable region for supercritical Hopf bifurcation are observed along with SLCs, which is an uncommon phenomenon in nuclear reactors. The presence of ULCs surrounding SLCs are observed both in the stable and unstable side on the parameter plane for supercritical Hopf. For the safe operation of a nuclear reactor, identification of the region of global stability is of paramount interest.