ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Ben C. Yee, Brendan Kochunas, Edward W. Larsen, Yunlin Xu
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 140-159
Technical Paper | doi.org/10.1080/00295639.2017.1350001
Articles are hosted by Taylor and Francis Online.
We present a new concept—the space-dependent Wielandt shift (SDWS)—for accelerating the convergence of the power iteration (PI) scheme for multigroup diffusion k-eigenvalue problems. The SDWS improves on standard Wielandt shift (WS) techniques, which are empirical in nature and are typically effective only when the current estimate of the solution is reasonably converged. By accounting for the physics of the problem through SDWS, we are able to improve the acceleration for the initial iterates when the current estimate of the solution is not close to convergence. Numerical results from one-dimensional problems suggest that, compared to standard WS techniques, the new SDWS techniques can provide upward of a 46% reduction in the number of PIs required for convergence and a 40% reduction in the computational time required. This improvement is sensitive to several problem-dependent factors, such as the geometry and energy-dependence of the problem, the spatial discretization, and the initial guess. The reduction in computational time is also dependent on the linear solver in the PI scheme, as it is well known that WSs can significantly worsen the conditioning of the diffusion linear system. In this paper, we provide a detailed study of the impact of WSs on the performance of several iterative linear solvers. Results from our implementation of SDWS in the three-dimensional (3D) code MPACT show that SDWS can provide similar speedups for 3D multigroup diffusion eigenvalue problems. These results also show that moderate speedups can be obtained by applying SDWS to the coarse mesh finite difference (CMFD) solver in a CMFD-accelerated transport scheme. However, the benefit of doing this may be limited because all but the first few CMFD solves are relatively easy to converge, regardless of the WS used.