ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Education and training to support Canadian nuclear workforce development
Along with several other nations, Canada has committed to net-zero emissions by 2050. Part of this plan is tripling nuclear generating capacity. As of 2025, the country has four operating nuclear generating stations with a total of 17 reactors, 16 of which are in the province of Ontario. The Independent Electricity System Operator has recommended that an additional 17,800 MWe of nuclear power be added to Ontario’s grid.
Ben C. Yee, Brendan Kochunas, Edward W. Larsen, Yunlin Xu
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 140-159
Technical Paper | doi.org/10.1080/00295639.2017.1350001
Articles are hosted by Taylor and Francis Online.
We present a new concept—the space-dependent Wielandt shift (SDWS)—for accelerating the convergence of the power iteration (PI) scheme for multigroup diffusion k-eigenvalue problems. The SDWS improves on standard Wielandt shift (WS) techniques, which are empirical in nature and are typically effective only when the current estimate of the solution is reasonably converged. By accounting for the physics of the problem through SDWS, we are able to improve the acceleration for the initial iterates when the current estimate of the solution is not close to convergence. Numerical results from one-dimensional problems suggest that, compared to standard WS techniques, the new SDWS techniques can provide upward of a 46% reduction in the number of PIs required for convergence and a 40% reduction in the computational time required. This improvement is sensitive to several problem-dependent factors, such as the geometry and energy-dependence of the problem, the spatial discretization, and the initial guess. The reduction in computational time is also dependent on the linear solver in the PI scheme, as it is well known that WSs can significantly worsen the conditioning of the diffusion linear system. In this paper, we provide a detailed study of the impact of WSs on the performance of several iterative linear solvers. Results from our implementation of SDWS in the three-dimensional (3D) code MPACT show that SDWS can provide similar speedups for 3D multigroup diffusion eigenvalue problems. These results also show that moderate speedups can be obtained by applying SDWS to the coarse mesh finite difference (CMFD) solver in a CMFD-accelerated transport scheme. However, the benefit of doing this may be limited because all but the first few CMFD solves are relatively easy to converge, regardless of the WS used.