ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Ben C. Yee, Brendan Kochunas, Edward W. Larsen, Yunlin Xu
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 140-159
Technical Paper | doi.org/10.1080/00295639.2017.1350001
Articles are hosted by Taylor and Francis Online.
We present a new concept—the space-dependent Wielandt shift (SDWS)—for accelerating the convergence of the power iteration (PI) scheme for multigroup diffusion k-eigenvalue problems. The SDWS improves on standard Wielandt shift (WS) techniques, which are empirical in nature and are typically effective only when the current estimate of the solution is reasonably converged. By accounting for the physics of the problem through SDWS, we are able to improve the acceleration for the initial iterates when the current estimate of the solution is not close to convergence. Numerical results from one-dimensional problems suggest that, compared to standard WS techniques, the new SDWS techniques can provide upward of a 46% reduction in the number of PIs required for convergence and a 40% reduction in the computational time required. This improvement is sensitive to several problem-dependent factors, such as the geometry and energy-dependence of the problem, the spatial discretization, and the initial guess. The reduction in computational time is also dependent on the linear solver in the PI scheme, as it is well known that WSs can significantly worsen the conditioning of the diffusion linear system. In this paper, we provide a detailed study of the impact of WSs on the performance of several iterative linear solvers. Results from our implementation of SDWS in the three-dimensional (3D) code MPACT show that SDWS can provide similar speedups for 3D multigroup diffusion eigenvalue problems. These results also show that moderate speedups can be obtained by applying SDWS to the coarse mesh finite difference (CMFD) solver in a CMFD-accelerated transport scheme. However, the benefit of doing this may be limited because all but the first few CMFD solves are relatively easy to converge, regardless of the WS used.