ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
Sam Altman steps down as Oklo board chair
Advanced nuclear company Oklo Inc. has new leadership for its board of directors as billionaire Sam Altman is stepping down from the position he has held since 2015. The move is meant to open new partnership opportunities with OpenAI, where Altman is CEO, and other artificial intelligence companies.
Timothy P. Burke, Brian C. Kiedrowski, William R. Martin
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 109-139
Technical Paper | doi.org/10.1080/00295639.2017.1350000
Articles are hosted by Taylor and Francis Online.
Kernel density estimators (KDEs) are applied to estimate neutron scalar flux and reaction rate densities in Monte Carlo neutron transport simulations of heterogeneous nuclear reactors in continuous energy. The mean free path (MFP) KDE is introduced in order to handle the issues that arise from estimating the discontinuous reaction rate densities at material interfaces. Results show the MFP KDE is more accurate at estimating reaction rates compared with previous KDE formulations. An approximate MFP (aMFP) KDE is introduced to circumvent several practical issues presented by the MFP KDE. A volume-averaged KDE is derived and used to determine the bias introduced by the aMFP KDE. A KDE is formulated for cylindrical coordinates to better represent the geometry and capture the physics in two-dimensional reactor physics problems. The results indicate that the cylindrical MFP KDE and cylindrical aMFP KDE are accurate tools for capturing reaction rates in heterogeneous reactor physics problems in continuous energy, with local biases of less than 1%.