ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Nano Nuclear wins Air Force contract for Kronos MMR
New York City–based advanced nuclear technology developer Nano Nuclear Energy has been awarded a Direct-to-Phase II Small Business Innovation Research contract for its Kronos micro modular reactor (MMR) by AFWERX, the innovation and venture arm of the U.S. Air Force. The contract calls for AFWERX, with the 11th Civil Engineering Squadron, to explore the feasibility of deploying the Kronos MMR Energy System at Joint Base Anacostia-Bolling (JBAB) in Washington, D.C.
Timothy P. Burke, Brian C. Kiedrowski, William R. Martin
Nuclear Science and Engineering | Volume 188 | Number 2 | November 2017 | Pages 109-139
Technical Paper | doi.org/10.1080/00295639.2017.1350000
Articles are hosted by Taylor and Francis Online.
Kernel density estimators (KDEs) are applied to estimate neutron scalar flux and reaction rate densities in Monte Carlo neutron transport simulations of heterogeneous nuclear reactors in continuous energy. The mean free path (MFP) KDE is introduced in order to handle the issues that arise from estimating the discontinuous reaction rate densities at material interfaces. Results show the MFP KDE is more accurate at estimating reaction rates compared with previous KDE formulations. An approximate MFP (aMFP) KDE is introduced to circumvent several practical issues presented by the MFP KDE. A volume-averaged KDE is derived and used to determine the bias introduced by the aMFP KDE. A KDE is formulated for cylindrical coordinates to better represent the geometry and capture the physics in two-dimensional reactor physics problems. The results indicate that the cylindrical MFP KDE and cylindrical aMFP KDE are accurate tools for capturing reaction rates in heterogeneous reactor physics problems in continuous energy, with local biases of less than 1%.