ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Delgersaikhan Tuya, Hiroki Takezawa, Toru Obara
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 33-42
Technical Paper | doi.org/10.1080/00295639.2017.1337383
Articles are hosted by Taylor and Francis Online.
An approach to multiregion supercritical transient analysis based on the integral kinetic model (IKM) and Monte Carlo method is further developed with new features. The IKM describes the region-dependent fission rate during the transient in a system of arbitrary geometry using a secondary fission probability density function, which takes the explicit neutron transport time between successive fissions across the regions into account. The new features of the improved approach include treatment of the multiregion transient using repeated multidimensional linear interpolation between pre-obtained kinetic functions (i.e., secondary probability density function), a new method for calculating the kinetic functions using the continuous-energy Monte Carlo code MVP2.0, and utilization of kinetic functions directly in the IKM without the fitting function that introduces a fitting error. The improved approach is verified by applying it to the supercritical transient in simple Godiva systems of different region combinations without feedback. In addition, we attempt to validate the improved approach by applying it to the supercritical transient in a simplified Godiva system with thermal expansion feedback and compare the obtained and experimental results. The verification results indicate the improved approach works well with different combinations of regions while the validation results show promising agreement with the experimental results. This study is part of an ongoing research activity on the development of Multi-region Integral Kinetic (MIK) code for general space- and time-dependent kinetic analyses.