ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
May 2025
Fusion Science and Technology
Latest News
EnergySolutions to help explore advanced reactor development in Utah
Utah-based waste management company EnergySolutions announced that it has signed a memorandum of understating with the Intermountain Power Agency and the state of Utah to explore the development of advanced nuclear power generation at the Intermountain Power Project (IPP) site near Delta, Utah.
Seungsu Yuk, Nam Zin Cho
Nuclear Science and Engineering | Volume 188 | Number 1 | October 2017 | Pages 1-14
Technical Paper | doi.org/10.1080/00295639.2017.1332891
Articles are hosted by Taylor and Francis Online.
This paper identifies the cause of slow convergence for optically thick coarse mesh cells, when coarse mesh-based acceleration methods known in the literature are applied to the neutron transport criticality calculation. To overcome the limitation, this paper introduces two two-level iterative schemes to speed up coarse mesh-based acceleration, and they are applied to the partial current-based coarse mesh finite difference (p-CMFD) acceleration method. In the first scheme, a type of fine mesh finite difference (p-FMFD)- or intermediate mesh finite difference (p-IMFD)-based acceleration with a fixed fission source is augmented in a coarse mesh-based acceleration with power iteration. The second scheme applies global/local inner iterations in addition to the first scheme. Because p-CMFD is unconditionally stable and provides transport partial currents (instead of net current) on the interface between two coarse mesh cells, this enables the two schemes to speed up convergence even in optically thick coarse mesh cells. Numerical results on one-dimensional and two-dimensional test problems show that the two schemes (in particular, the scheme with global/local iterations) enhance the convergence speed of p-CMFD acceleration, especially for optically thick coarse mesh cells.