ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Mehdi S. Barough, V. D. Bharud, B. J. Patil, F. M. D. Attar, V. N. Bhoraskar, S. D. Dhole
Nuclear Science and Engineering | Volume 187 | Number 3 | September 2017 | Pages 302-311
Technical Paper | doi.org/10.1080/00295639.2017.1323505
Articles are hosted by Taylor and Francis Online.
The reaction cross sections of 55Mn(n, γ)56Mn and 65Cu(n, γ)66Cu have been measured over a neutron energy range from 1 keV to 4 MeV. The racetrack microtron accelerator-based neutron source was used for the cross-section measurement, which generates a neutron spectrum from 1 keV to 4 MeV. Moreover, the cross-sections of the nuclear reaction were calculated using TALYS-1.2 and EMPIRE nuclear codes. It has been observed that the experimental cross sections of manganese and copper are 8.5 mb and 4.5 mb, respectively, and they are quite close to the TALYS, EMPIRE, and evaluated data of ENDF/B-VII.0, ENDF/B-VII.1, JEFF-3.1.2, and EXFOR. For (n, γ) reactions studied in the present work, the results obtained using TALYS and EMPIRE codes are in agreement with literature values when the radiative capture width Гγ and the width fluctuation parameter, respectively, functioned by being adjusted to a suitable value. Further, the deviation factor for measured and theoretical cross sections has also been determined and it is found to be better for the 55Mn(n, γ)56Mn reaction obtained using TALYS compared to EMPIRE.