ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Lightbridge to test uranium-zirconium fuel alloy in INL’s ATR
Lightbridge Corporation has fabricated samples of nuclear fuel materials made of an enriched uranium-zirconium alloy, matching the composition of the alloy that the company intends to use for its future commercial Lightbridge Fuel product. The fuel is designed to improve the performance, safety, and proliferation resistance of nuclear reactors, according to the company. The enriched coupon samples will now be placed into capsules for irradiation testing in Idaho National Laboratory’s Advanced Test Reactor.
T. Hino, J. Miwa, T. Mitsuyasu, Y. Ishii, M. Ohtsuka, K. Moriya, K. Shirvan, V. Seker, A. Hall, T. Downar, P. M. Gorman, M. Fratoni, E. Greenspan
Nuclear Science and Engineering | Volume 187 | Number 3 | September 2017 | Pages 213-239
Technical Paper | doi.org/10.1080/00295639.2017.1312941
Articles are hosted by Taylor and Francis Online.
The resource-renewable boiling water reactor (RBWR) is an innovative boiling water reactor that has the capability to breed or to burn transuranium elements (TRUs). Core characteristics of the RBWR of the TRU burner type were evaluated by two different core analysis methods. The RBWR core features an axially heterogeneous configuration, which consists of an internal blanket region between two seed regions, to achieve the TRU multi-recycling capability while maintaining a negative void reactivity coefficient. Axial power distribution of the TRU burner core tends to be more heterogeneous because the isotopic composition ratio of fertile TRUs to fissile TRUs becomes larger in the TRU burner–type core than in the breeder-type core and the seed regions need to be axially shorter than that of the breeder-type core. Thus core analysis of the TRU burner–type core is more challenging. A conventional diffusion calculation using nuclear constants prepared by two-dimensional lattice calculations was performed by Hitachi, while the calculation using nuclear constants prepared by three-dimensional calculations and axial discontinuity factors was performed by the University of Michigan to provide a more sophisticated treatment of the axial heterogeneity. Both calculations predicted similar axial power distributions except in the region near the boundary between fuel and plenum. Both calculations also predicted negative void reactivity coefficients throughout the operating cycle. Safety analysis was performed by Massachusetts Institute of Technology for the all-pump trip accident, which was identified as the limiting accident for the RBWR design. The analysis showed the peak cladding temperature remains below the safety limit. Detailed fuel cycle analysis by University of California, Berkeley, showed that per electrical power generated, the RBWR is capable of incinerating TRUs at about twice the rate at which they are produced in typical pressurized water reactors.