ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NASA, DOE solidify collaboration on a lunar surface reactor
NASA and the Department of Energy have announced a “renewed commitment” to their mutual goal of supporting research and development for a nuclear fission reactor on the lunar surface to provide power for future missions. The agencies have signed a memorandum of understanding that “solidifies this collaboration and advances President Trump’s vision of American space superiority.”
B. Richardson, J. King, A. Alajo, S. Usman, C. H. C. Giraldo
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 100-106
Technical Paper | doi.org/10.1080/00295639.2017.1292089
Articles are hosted by Taylor and Francis Online.
To validate an MCNP5 model of the Missouri S&T Research Reactor (MSTR), temperature and void effects on reactivity experiments were simulated and performed. We compared the keff of the modeled reactor mirroring the position of all control rods to the actual critical reactor (keff = 1.00000). In the simulation we modeled three different scenarios. In the first two scenarios, the reactor is modeled as isothermal at two different temperatures (measured experimentally near the core), and in the third scenario, we split the core into bottom and top parts and used interpolated values for the temperatures of both halves. The model predicted keff’s for the “critical reactor” between 1.00234 and 1.00248 (±0.00018) when using as temperature the experimental thermocouple readings at the top of the core and keff’s between 1.00296 to 1.00383 (±0.00018) when using the temperature of thermocouple readings at the bottom of the core. In the third experiment, a linear vertical temperature profile was included in the model (only top and bottom of the core), and the model predicted keff’s between 1.00218 and 1.00302 (±0.00018). The keff modeled and experimental values differed by as much as 0.40%. A void coefficient of the reactivity experiment was also simulated introducing a void tube in the model and the control rods made to mirror the critical experimental reactor with an identical void.