ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Benjamin R. Betzler, David Chandler, Eva E. Davidson (née Sunny), Germina Ilas
Nuclear Science and Engineering | Volume 187 | Number 1 | July 2017 | Pages 81-99
Technical Paper | doi.org/10.1080/00295639.2017.1292090
Articles are hosted by Taylor and Francis Online.
A high-fidelity model of the High Flux Isotope Reactor (HFIR) with a low-enriched uranium (LEU) fuel design and a representative experiment loading has been developed to serve as a new reference model for LEU conversion studies. With the exception of the fuel elements, this HFIR LEU model is completely consistent with the current highly enriched uranium HFIR model. Results obtained with the new LEU model provide a baseline for analysis of alternate LEU fuel designs and further optimization studies.
The newly developed HFIR LEU model has an explicit representation of the HFIR-specific involute fuel plate geometry, including the within-plate fuel meat contouring, and a detailed geometry model of the fuel element side plates. Such high-fidelity models are necessary to accurately account for the self-shielding from 238U and the depletion of absorber materials present in the side plates. In addition, a method was developed to account for fuel swelling in the high-density LEU fuel plates during the depletion simulation. Calculated time-dependent metrics for the HFIR LEU model include fission rate and cumulative fission density distributions, flux and reaction rates for relevant experiment locations, point kinetics data, and reactivity coefficients.