ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC’s David Wright visits the Hill and more NRC news
Wright
The Nuclear Regulatory Commission is in the spotlight today for three very different reasons. First, NRC Chair David Wright was on Capitol Hill yesterday for his renomination hearing in front of the Senate’s Environment and Public Works Committee. Second, the NRC released its updated milestone schedules according to the Nuclear Energy Innovation and Modernization Act (NEIMA) and the executive orders signed by President Trump last month; and third, as reported by Reuters on Tuesday, 28 former NRC officials have condemned the dismissal of Commissioner Hanson earlier this month.
Renomination: EPW Committee chair Sen. Shelley Moore Capito (R., W.Va.) opened the hearing with a statement praising Wright’s experience and emphasized the urgency of stable leadership at the NRC.
“China is executing a rapid build-out of its nuclear industry,” Capito said. “The demand for clean, baseload power is skyrocketing as we position America to win the AI race.”
M. J. Trbovich, D. P. Barry, R. E. Slovacek, Y. Danon, R. C. Block, N. C. Francis, M. Lubert, J. A. Burke, N. J. Drindak, G. Leinweber, R. Ballad
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 303-320
Technical Paper | doi.org/10.13182/NSE161-303
Articles are hosted by Taylor and Francis Online.
The focus of this work is to determine the resonance parameters for stable hafnium isotopes in the 0.005- to 200-eV region, with special emphasis on the overlapping 176Hf and 178Hf resonances near 8 eV. Accurate hafnium cross sections and resonance parameters are needed in order to quantify the effects of hafnium found in zirconium, a metal commonly used in reactors. The accuracy of the cross sections and the corresponding resonance parameters used in current nuclear analysis tools are rapidly becoming the limiting factor in reducing the overall uncertainty on reactor physics calculations.Experiments measuring neutron capture and transmission are routinely performed at the Rensselaer Polytechnic Institute LINAC using the time-of-flight technique. Lithium-6 glass scintillation detectors were used for transmission experiments at flight path lengths of 15 and 25 m, respectively. Capture experiments were performed using a 16-section NaI multiplicity detector at a flight path length of 25 m. These experiments utilized several thicknesses of metallic and isotope-enriched liquid Hf samples. The liquid Hf samples were designed to provide information on the 176Hf and 178Hf contributions to the 8-eV doublet without saturation.Data analyses were performed using the R-matrix Bayesian code SAMMY. A combined capture and transmission data analysis yielded resonance parameters for all hafnium isotopes from 0.005 to 200 eV. Additionally, resonance integrals were calculated, along with errors for each hafnium isotope, using the NJOY and INTER codes. The isotopic resonance integrals calculated were significantly different from previous values. The 176Hf resonance integral, based on this work, is ~73% higher than the ENDF/B-VI value. This is due primarily to the changes to resonance parameters in the 8-eV resonance; the neutron width presented in this work is more than twice that of the previous value. The calculated elemental hafnium resonance integral, however, changed very little.