ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Leonid Golyand, Eugene Shwageraus, Yigal Ronen
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 289-302
Technical Paper | doi.org/10.13182/NSE161-289
Articles are hosted by Taylor and Francis Online.
The growing interest in innovative reactors and advanced fuel cycle designs requires more accurate prediction of various transuranic actinide concentrations during irradiation or following discharge because of their effect on reactivity or spent-fuel emissions, such as gamma and neutron activity and decay heat.In this respect, many of the important actinides originate from the 241Am(n,) reaction, which leads to either the ground or the metastable state of 242Am. The branching ratio for this reaction depends on the incident neutron energy and has very large uncertainty in the current evaluated nuclear data files.This study examines the effect of accounting for the energy dependence of the 241Am(n,) reaction branching ratio calculated from different evaluated data files for different reactor and fuel types on the reactivity and concentrations of some important actinides.The results of the study confirm that the uncertainty in knowing the 241Am(n,) reaction branching ratio has a negligible effect on the characteristics of conventional light water reactor fuel. However, in advanced reactors with large loadings of actinides in general, and 241Am in particular, the branching ratio data calculated from the different data files may lead to significant differences in the prediction of the fuel criticality and isotopic composition. Moreover, it was found that neutron energy spectrum weighting of the branching ratio in each analyzed case is particularly important and may result in up to a factor of 2 difference in the branching ratio value. Currently, most of the neutronic codes have a single branching ratio value in their data libraries, which is sometimes difficult or impossible to update in accordance with the neutron spectrum shape for the analyzed system.