ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Emiliano Masiello, Richard Sanchez, Igor Zmijarevic
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 257-278
Technical Paper | doi.org/10.13182/NSE161-257
Articles are hosted by Taylor and Francis Online.
The method of short characteristics is extended to two-dimensional heterogeneous Cartesian cells. The new application is intended for realistic pin-by-pin lattice calculations with an exact representation of the geometric shape of the pins, without need for homogenization. The method keeps the advantages of conventional discrete ordinates methods, such as fast execution, together with the possibility to deal with a large number of spatial meshes. Expansion bases, spatial integration, and balance conservation are discussed. A Fourier analysis of the method shows that the scheme preserves the asymptotic behavior of analytical transport. Two coarse-mesh finite difference acceleration techniques have also been analyzed and generalized with the use of Eddington's factors to speed up the rate of convergence of the inner iterations. Numerical examples for realistic configurations show the precision of the method and the efficiency of the accelerated iterations. An analytical stability analysis is also presented for studying the nonconverged behavior of the accelerated scheme, and we give numerical proof of chaotic behavior and the existence of bifurcations.