ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
The spark of the Super: Teller–Ulam and the birth of the H-bomb—rivalry, credit, and legacy at 75 years
In early 1951, Los Alamos scientists Edward Teller and Stanislaw Ulam devised a breakthrough that would lead to the hydrogen bomb [1]. Their design gave the United States an initial advantage in the Cold War, though comparable progress was soon achieved independently in the Soviet Union and the United Kingdom.
Emiliano Masiello, Richard Sanchez, Igor Zmijarevic
Nuclear Science and Engineering | Volume 161 | Number 3 | March 2009 | Pages 257-278
Technical Paper | doi.org/10.13182/NSE161-257
Articles are hosted by Taylor and Francis Online.
The method of short characteristics is extended to two-dimensional heterogeneous Cartesian cells. The new application is intended for realistic pin-by-pin lattice calculations with an exact representation of the geometric shape of the pins, without need for homogenization. The method keeps the advantages of conventional discrete ordinates methods, such as fast execution, together with the possibility to deal with a large number of spatial meshes. Expansion bases, spatial integration, and balance conservation are discussed. A Fourier analysis of the method shows that the scheme preserves the asymptotic behavior of analytical transport. Two coarse-mesh finite difference acceleration techniques have also been analyzed and generalized with the use of Eddington's factors to speed up the rate of convergence of the inner iterations. Numerical examples for realistic configurations show the precision of the method and the efficiency of the accelerated iterations. An analytical stability analysis is also presented for studying the nonconverged behavior of the accelerated scheme, and we give numerical proof of chaotic behavior and the existence of bifurcations.