ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Dan Gabriel Cacuci
Nuclear Science and Engineering | Volume 186 | Number 3 | June 2017 | Pages 199-223
Technical Paper | doi.org/10.1080/00295639.2017.1305244
Articles are hosted by Taylor and Francis Online.
Using the problem of inverse prediction from detector responses in the presence of counting uncertainties of the thickness of a homogeneous slab of material containing uniformly distributed gamma-emitting sources, this work investigates the possible reasons for the apparent failure of the traditional inverse-problem methods based on the minimization of chi-square-type functionals to predict accurate results for optically thick slabs. This work also compares the results produced by such methods with the results produced by applying the Predictive Modeling of Coupled Multi-Physics Systems (PM-CMPS) methodology for optically thin and thick slabs. For optically thin slabs, this work shows that both the traditional chi-square-minimization method and the PM-CMPS methodology predict the slab’s thickness accurately. However, the PM-CMPS methodology is considerably more efficient computationally, and a single application of the PM-CMPS methodology predicts the thin slab’s thickness at least as precisely as the traditional chi-square-minimization method, even though the measurements used in the PM-CMPS methodology were ten times less accurate than the ones used for the traditional chi-square-minimization method. For optically thick slabs, the results obtained in this work show that: (1) the traditional inverse-problem methods based on the minimization of chi-square-type functionals fail to predict the slab’s thickness; (2) the PM-CMPS methodology underpredicts the slab’s actual physical thickness when imprecise experimental results are assimilated, even though the predicted responses agree within the imposed error criterion with the experimental results; (3) the PM-CMPS methodology correctly predicts the slab’s actual physical thickness when precise experimental results are assimilated, while also predicting the physically correct response within the selected precision criterion; and (4) the PM-CMPS methodology is computational vastly more efficient while yielding significantly more accurate results than the traditional chi-square-minimization methodology.