ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
SC Nuclear Summit focuses on V.C. Summer
The second annual South Carolina Nuclear Summit held last week featured utility executives and legislators from the state, as well as leaders from Brookfield Asset Management, which is being considered to restart construction on the two abandoned reactors at the V.C. Summer nuclear power plant in Fairfield County. The summit, at the University of South Carolina’s Colonial Life Arena, attracted more than 350 attendees. The event was hosted by the university’s Molinaroli College of Engineering and Computing.
C. D. Bowman, D. C. Bowman, E. G. Bilpuch, A. S. Crowell, C. R. Howell, K. McCabe, G. A. Smith, A. P. Tonchev, W. Tornow, V. Vylet, R. L. Walter
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 119-124
Technical Note | doi.org/10.13182/NSE161-119
Articles are hosted by Taylor and Francis Online.
Measurements are reported on the yield of neutrons from protons in the energy range from 7 to 17 MeV striking a stopping-length target of deuterium gas. This combination of beam and target is being investigated as an alternative to spallation for accelerator-driven transmutation technology with perhaps equivalent or lower energy cost per neutron. The concept includes neutrons produced from a cascade of reactions starting with the p + d reaction giving rise to subsequent fusion neutrons and neutrons from higher-order breakup reactions. In our application the incident proton energy is expected to be ~100 MeV so that most of the neutrons produced in these reactions will be higher-energy neutrons that can undergo multiplication in surrounding beryllium or lead. The results reported here for lower proton energies indicate that the expected fusion and higher-order breakup reactions have been observed, and they provide the basis for a measurement at 100 MeV to confirm the larger proton-induced cascade benefits expected at higher proton energies.