ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 Student Conference
April 8–10, 2021
Virtual Meeting
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2021
Jul 2020
Latest Journal Issues
Nuclear Science and Engineering
March 2021
Nuclear Technology
February 2021
Fusion Science and Technology
January 2021
Latest News
NC State celebrates 70 years of nuclear engineering education
An early picture of the research reactor building on the North Carolina State University campus. The Department of Nuclear Engineering is celebrating the 70th anniversary of its nuclear engineering curriculum in 2020–2021. Photo: North Carolina State University
The Department of Nuclear Engineering at North Carolina State University has spent the 2020–2021 academic year celebrating the 70th anniversary of its becoming the first U.S. university to establish a nuclear engineering curriculum. It started in 1950, when Clifford Beck, then of Oak Ridge, Tenn., obtained support from NC State’s dean of engineering, Harold Lampe, to build the nation’s first university nuclear reactor and, in conjunction, establish an educational curriculum dedicated to nuclear engineering.
The department, host to the 2021 ANS Virtual Student Conference, scheduled for April 8–10, now features 23 tenure/tenure-track faculty and three research faculty members. “What a journey for the first nuclear engineering curriculum in the nation,” said Kostadin Ivanov, professor and department head.
Lénárd Pál, Imre Pázsit
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 111-118
Technical Paper | dx.doi.org/10.13182/NSE161-111
Articles are hosted by Taylor and Francis Online.
The concept and calculation techniques of multiplicities in nuclear safeguards are applied to the calculation of the traditional fast fission factor of reactor physics. The concept is the assumption that the original source neutrons from spontaneous or induced fission, and the further neutrons given rise through fast fission in the sample before leakage, are considered as being generated simultaneously with the source neutrons. The number distribution of the neutrons arising from such a "superfission" process will be different from that of the nuclear fission process. Concerning the mathematical treatment, in safeguards literature the master equation approach is used to calculate the moments of such a distribution. Hence, to follow suit, a derivation of the fast fission factor is given here by a backward master equation. This method has the advantages that the derivation of the fast fission factor becomes more transparent than the traditional method, and that it also allows the determination of higher-order moments, notably the variance, of the total number of neutrons generated, i.e., when account is also taken of the contribution of fast fission to these moments. The results show that the relative standard deviation increases quickly with the increase of the nonleakage probability of neutrons, and hence, with the increase of the fast fission factor itself. Also, the Diven factor of the superfission process (neutrons from fast fissions included) is significantly larger than that of thermal fission. We argue that the traditional model, in which the Feynman- and Rossi-alpha models are derived, does not account correctly for the extra branching represented by the fast fission process. Hence, the Diven factor traditionally used in those formulas should be used in a modified form. We show how the effect of fast fission needs to be included in the model to obtain the correct formula and give explicit expressions. Some quantitative examples are given for illustration.