ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Lénárd Pál, Imre Pázsit
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 111-118
Technical Paper | doi.org/10.13182/NSE161-111
Articles are hosted by Taylor and Francis Online.
The concept and calculation techniques of multiplicities in nuclear safeguards are applied to the calculation of the traditional fast fission factor of reactor physics. The concept is the assumption that the original source neutrons from spontaneous or induced fission, and the further neutrons given rise through fast fission in the sample before leakage, are considered as being generated simultaneously with the source neutrons. The number distribution of the neutrons arising from such a "superfission" process will be different from that of the nuclear fission process. Concerning the mathematical treatment, in safeguards literature the master equation approach is used to calculate the moments of such a distribution. Hence, to follow suit, a derivation of the fast fission factor is given here by a backward master equation. This method has the advantages that the derivation of the fast fission factor becomes more transparent than the traditional method, and that it also allows the determination of higher-order moments, notably the variance, of the total number of neutrons generated, i.e., when account is also taken of the contribution of fast fission to these moments. The results show that the relative standard deviation increases quickly with the increase of the nonleakage probability of neutrons, and hence, with the increase of the fast fission factor itself. Also, the Diven factor of the superfission process (neutrons from fast fissions included) is significantly larger than that of thermal fission. We argue that the traditional model, in which the Feynman- and Rossi-alpha models are derived, does not account correctly for the extra branching represented by the fast fission process. Hence, the Diven factor traditionally used in those formulas should be used in a modified form. We show how the effect of fast fission needs to be included in the model to obtain the correct formula and give explicit expressions. Some quantitative examples are given for illustration.