ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Lénárd Pál, Imre Pázsit
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 111-118
Technical Paper | doi.org/10.13182/NSE161-111
Articles are hosted by Taylor and Francis Online.
The concept and calculation techniques of multiplicities in nuclear safeguards are applied to the calculation of the traditional fast fission factor of reactor physics. The concept is the assumption that the original source neutrons from spontaneous or induced fission, and the further neutrons given rise through fast fission in the sample before leakage, are considered as being generated simultaneously with the source neutrons. The number distribution of the neutrons arising from such a "superfission" process will be different from that of the nuclear fission process. Concerning the mathematical treatment, in safeguards literature the master equation approach is used to calculate the moments of such a distribution. Hence, to follow suit, a derivation of the fast fission factor is given here by a backward master equation. This method has the advantages that the derivation of the fast fission factor becomes more transparent than the traditional method, and that it also allows the determination of higher-order moments, notably the variance, of the total number of neutrons generated, i.e., when account is also taken of the contribution of fast fission to these moments. The results show that the relative standard deviation increases quickly with the increase of the nonleakage probability of neutrons, and hence, with the increase of the fast fission factor itself. Also, the Diven factor of the superfission process (neutrons from fast fissions included) is significantly larger than that of thermal fission. We argue that the traditional model, in which the Feynman- and Rossi-alpha models are derived, does not account correctly for the extra branching represented by the fast fission process. Hence, the Diven factor traditionally used in those formulas should be used in a modified form. We show how the effect of fast fission needs to be included in the model to obtain the correct formula and give explicit expressions. Some quantitative examples are given for illustration.