ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
Lénárd Pál, Imre Pázsit
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 111-118
Technical Paper | doi.org/10.13182/NSE161-111
Articles are hosted by Taylor and Francis Online.
The concept and calculation techniques of multiplicities in nuclear safeguards are applied to the calculation of the traditional fast fission factor of reactor physics. The concept is the assumption that the original source neutrons from spontaneous or induced fission, and the further neutrons given rise through fast fission in the sample before leakage, are considered as being generated simultaneously with the source neutrons. The number distribution of the neutrons arising from such a "superfission" process will be different from that of the nuclear fission process. Concerning the mathematical treatment, in safeguards literature the master equation approach is used to calculate the moments of such a distribution. Hence, to follow suit, a derivation of the fast fission factor is given here by a backward master equation. This method has the advantages that the derivation of the fast fission factor becomes more transparent than the traditional method, and that it also allows the determination of higher-order moments, notably the variance, of the total number of neutrons generated, i.e., when account is also taken of the contribution of fast fission to these moments. The results show that the relative standard deviation increases quickly with the increase of the nonleakage probability of neutrons, and hence, with the increase of the fast fission factor itself. Also, the Diven factor of the superfission process (neutrons from fast fissions included) is significantly larger than that of thermal fission. We argue that the traditional model, in which the Feynman- and Rossi-alpha models are derived, does not account correctly for the extra branching represented by the fast fission process. Hence, the Diven factor traditionally used in those formulas should be used in a modified form. We show how the effect of fast fission needs to be included in the model to obtain the correct formula and give explicit expressions. Some quantitative examples are given for illustration.