ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Mei-Ya Wang, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 180-189
Technical Paper | doi.org/10.1080/00295639.2016.1273014
Articles are hosted by Taylor and Francis Online.
Hydrogen water chemistry (HWC), aiming at coolant chemistry improvement, has been adopted worldwide for mitigating intergranular stress corrosion cracking in operating boiling water reactors (BWRs). However, a conventional hydrogen injection system employed in this technology was designed to operate only at power levels >30% of the rated power or at coolant temperatures >232°C. This system is usually in an idle and standby mode during a start-up operation. The coolant in a BWR during a cold shutdown normally contains a relatively high level of dissolved oxygen from intrusion of atmospheric air. Accordingly, the structural materials in the primary coolant circuit (PCC) of a BWR could be exposed to a strongly oxidizing environment for a short period of time during a subsequent start-up operation. In this study, the computer code DEMACE was used to investigate the variations in redox species concentration and in electrochemical corrosion potential (ECP) of structural components in the PCC of a domestic BWR during start-up operations with HWC. Simulations were carried out for power levels ranging from 3.8% to 11.3% during start-up operations. Our analyses indicated that for selected power levels with steam present in the core, a higher power level would tend to promote a more oxidizing coolant environment and therefore lead to less HWC effectiveness on ECP reduction. At even lower power levels in the absence of steam, the effectiveness of HWC was more prominent. At a feedwater hydrogen concentration of merely 0.1 parts per million, significant ECP reductions in the PCC of the BWR were observed.