ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
DOE announces NEPA exclusion for advanced reactors
The Department of Energy has announced that it is establishing a categorical exclusion for the application of National Environmental Policy Act (NEPA) procedures to the authorization, siting, construction, operation, reauthorization, and decommissioning of advanced nuclear reactors.
According to the DOE, this significant change, which goes into effect today, “is based on the experience of DOE and other federal agencies, current technologies, regulatory requirements, and accepted industry practice.”
L. Mathieu, D. Heuer, E. Merle-Lucotte, R. Brissot, C. Le Brun, E. Liatard, J.-M. Loiseaux, O. MÃplan, A. Nuttin, D. Lecarpentier
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 78-89
Technical Paper | doi.org/10.13182/NSE07-49
Articles are hosted by Taylor and Francis Online.
Molten Salt Reactors based on the thorium cycle were studied in the 1950 to 1960s to lead to the Molten Salt Breeder Reactor concept, which was finally discontinued prior to any industrial development. In the past few years, this concept has once again been studied in order to generalize it and seek configurations ensuring a high intrinsic safety level, an initial inventory compatible with intensive deployment on a worldwide scale, and a not-too-demanding salt chemical reprocessing scheme.The Thorium Molten Salt Reactor (TMSR) thus defined is studied in the Th-233U cycle in various configurations obtained by modulating the amount of graphite in core to obtain a thermal, an epithermal, or a fast spectrum. In particular, configurations of a fast spectrum TMSR have been identified with outstanding safety characteristics and minimal fuel-reprocessing requirements.