ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Another building prepares to come down at Oak Ridge’s Y-12 complex
The Department of Energy’s Office of Environmental Management said that crews with the Oak Ridge Office of Environmental Management (OREM) and its cleanup contractor UCOR are preparing to demolish another deteriorating Manhattan Project–era building at the Y-12 National Security Complex at Oak Ridge, Tenn.
Tengfei Zhang, E. E. Lewis, M. A. Smith, W. S. Yang, Hongchun Wu
Nuclear Science and Engineering | Volume 186 | Number 2 | May 2017 | Pages 120-133
Technical Paper | doi.org/10.1080/00295639.2016.1273023
Articles are hosted by Taylor and Francis Online.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method of characteristics (MOC)–based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (PN) on the axial interfaces. The x-y surfaces are treated with high-order PN combined with quasi-reflected interface conditions. The method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.