ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
C. D. Bowman, E. G. Bilpuch, D. C. Bowman, A. S. Crowell, C. R. Howell, K. McCabe, G. A. Smith, A. P. Tonchev, W. Tornow, V. Violet, R. B. Vogelaar, R. L. Walter, J. Yingling
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 68-77
Technical Paper | doi.org/10.13182/NSE161-68
Articles are hosted by Taylor and Francis Online.
The results of two experiments combined show that the diffusion length D for thermal neutrons in the graphite studied is 24% larger than expected from classical experiments and that the boron equivalent absorption is smaller than expected and consistent with zero. Taken together, the results indicate a reduction in parasitic thermal neutron absorption in heterogeneous graphite reactors by about 30%. The first experiment measured the z-dependence of thermal neutron flux in a column of 12 t of granular graphite with a neutron source at the bottom. A second measurement was made by pulsing the column with a neutron source at its center and measuring the neutron decay rate as a function of time after a pure exponential decay had been established. The diffusion coefficient D adjusted to a density of 1.60 g/cm3 is 1.05 ± 0.03 cm compared with the commonly accepted value of 0.85 ± 0.013 cm. The absorption in our graphite owing to impurities was found to be <10% of that from carbon alone. The parameter a/D that measures neutron loss was determined to be 0.000235 ± 0.000026 cm-2 for a density of 1.60 g/cm3 and may be compared with the commonly accepted value of 0.000340. The performance of graphite thermal spectrum reactors constructed using our graphite would be significantly enhanced over present expectations because neutron loss to graphite is a major factor in the neutron economy of graphite-moderated thermal reactors.