ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
C. D. Bowman, E. G. Bilpuch, D. C. Bowman, A. S. Crowell, C. R. Howell, K. McCabe, G. A. Smith, A. P. Tonchev, W. Tornow, V. Violet, R. B. Vogelaar, R. L. Walter, J. Yingling
Nuclear Science and Engineering | Volume 161 | Number 1 | January 2009 | Pages 68-77
Technical Paper | doi.org/10.13182/NSE161-68
Articles are hosted by Taylor and Francis Online.
The results of two experiments combined show that the diffusion length D for thermal neutrons in the graphite studied is 24% larger than expected from classical experiments and that the boron equivalent absorption is smaller than expected and consistent with zero. Taken together, the results indicate a reduction in parasitic thermal neutron absorption in heterogeneous graphite reactors by about 30%. The first experiment measured the z-dependence of thermal neutron flux in a column of 12 t of granular graphite with a neutron source at the bottom. A second measurement was made by pulsing the column with a neutron source at its center and measuring the neutron decay rate as a function of time after a pure exponential decay had been established. The diffusion coefficient D adjusted to a density of 1.60 g/cm3 is 1.05 ± 0.03 cm compared with the commonly accepted value of 0.85 ± 0.013 cm. The absorption in our graphite owing to impurities was found to be <10% of that from carbon alone. The parameter a/D that measures neutron loss was determined to be 0.000235 ± 0.000026 cm-2 for a density of 1.60 g/cm3 and may be compared with the commonly accepted value of 0.000340. The performance of graphite thermal spectrum reactors constructed using our graphite would be significantly enhanced over present expectations because neutron loss to graphite is a major factor in the neutron economy of graphite-moderated thermal reactors.