ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Anthony Michael Scopatz
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 83-97
Technical Paper | doi.org/10.1080/00295639.2016.1272384
Articles are hosted by Taylor and Francis Online.
A method for quickly determining deployment schedules that meet any given fuel cycle demands is presented here. This algorithm is fast enough to perform in situ within low-fidelity fuel cycle simulators. It uses Gaussian process regression models to predict the production curve as a function of time and the number of deployed facilities. Each of these predictions is measured against the demand curve using the dynamic time warping distance. The minimum-distance deployment schedule is evaluated in a full fuel cycle simulation, and the generated production curve then informs the model on the next optimization iteration. The method converges within five to ten iterations to a distance that is less than 1% of the total deployable production. This speed of convergence makes it suitable for use even when fuel cycle realizations are expensive, as in higher-fidelity or agent-based simulators. A representative once-through fuel cycle is used to demonstrate the methodology for reactor deployment. However, the algorithm itself is multivariate and may be used to determine the deployment schedules of many facility types that meet a number of independent criteria simultaneously. The once-through, electricity production example was chosen for the simplicity of illustrating the method.