ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Lara M. Pierpoint
Nuclear Science and Engineering | Volume 186 | Number 1 | April 2017 | Pages 66-82
Technical Paper | doi.org/10.1080/00295639.2016.1272386
Articles are hosted by Taylor and Francis Online.
Nuclear fuel cycle studies have provided a wealth of information on the potential impacts of advanced recycling systems. Deciding on fuel cycle implementation pathways, however, requires synthesizing volumes of data and navigating trade-offs between fuel cycle options. This research presents a framework intended to aid fuel cycle decision makers by focusing on the cost reduction/waste mitigation trade-off as a lens for choosing a near-term strategy. The framework consists of a fuel cycle simulation coupled to a decision tree model that maps evolution scenarios. System scenarios are constructed by considering the technological options for fuel cycle evolution and key uncertainties expected to affect the desirability of those options. For this study, the once-through fuel cycle is compared to a self-sustaining fast reactor (FR) fuel cycle. Scenarios are compared using a value function that incorporates cost and waste metrics. The results indicate that uranium costs and the attainable level of reprocessing efficiency may not significantly impact the suite of desirable decisions. On the other hand, the pattern and timing of nuclear builds as well as the extent to which FRs provide true waste mitigation more significantly impact the attractiveness of closing the fuel cycle.