ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Dan G. Cacuci, Federico Di Rocco
Nuclear Science and Engineering | Volume 185 | Number 3 | March 2017 | Pages 484-548
Technical Paper | doi.org/10.1080/00295639.2017.1279940
Articles are hosted by Taylor and Francis Online.
A cooling tower discharges waste heat produced by an industrial plant to the external environment. The amount of thermal energy discharged into the environment can be determined by measurements of quantities representing the external conditions, such as outlet air temperature, outlet water temperature, and outlet air relative humidity, in conjunction with computational models that simulate numerically the cooling tower’s behavior. Variations in the model’s parameters (e.g., material properties, model correlations, boundary conditions) cause variations in the model’s response. The functional derivatives of the model response with respect to the model parameters (called “sensitivities”) are needed to quantify such response variations changes. In this work, the comprehensive adjoint sensitivity analysis methodology for nonlinear systems is applied to compute the cooling tower’s response sensitivities to all of its model parameters. These sensitivities are used in this work for (1) ranking the model parameters according to the magnitude of their contribution to response uncertainties; (2) propagating the uncertainties in the model’s parameters to quantify the uncertainties in the model’s responses. In an accompanying work, these sensitivities are subsequently used for predictive modeling, combining computational and experimental information, including the respective uncertainties, to obtain optimally predicted best-estimate nominal values for the model’s parameters and responses, with reduced predicted uncertainties.