ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Dan G. Cacuci, Federico Di Rocco
Nuclear Science and Engineering | Volume 185 | Number 3 | March 2017 | Pages 484-548
Technical Paper | doi.org/10.1080/00295639.2017.1279940
Articles are hosted by Taylor and Francis Online.
A cooling tower discharges waste heat produced by an industrial plant to the external environment. The amount of thermal energy discharged into the environment can be determined by measurements of quantities representing the external conditions, such as outlet air temperature, outlet water temperature, and outlet air relative humidity, in conjunction with computational models that simulate numerically the cooling tower’s behavior. Variations in the model’s parameters (e.g., material properties, model correlations, boundary conditions) cause variations in the model’s response. The functional derivatives of the model response with respect to the model parameters (called “sensitivities”) are needed to quantify such response variations changes. In this work, the comprehensive adjoint sensitivity analysis methodology for nonlinear systems is applied to compute the cooling tower’s response sensitivities to all of its model parameters. These sensitivities are used in this work for (1) ranking the model parameters according to the magnitude of their contribution to response uncertainties; (2) propagating the uncertainties in the model’s parameters to quantify the uncertainties in the model’s responses. In an accompanying work, these sensitivities are subsequently used for predictive modeling, combining computational and experimental information, including the respective uncertainties, to obtain optimally predicted best-estimate nominal values for the model’s parameters and responses, with reduced predicted uncertainties.