ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Jeffrey A. Favorite, Zoltán Perkó, Brian C. Kiedrowski, Christopher M. Perfetti
Nuclear Science and Engineering | Volume 185 | Number 3 | March 2017 | Pages 384-405
Technical Paper | doi.org/10.1080/00295639.2016.1272990
Articles are hosted by Taylor and Francis Online.
The evaluation of uncertainties is essential for criticality safety. This paper deals with material density and composition uncertainties and provides guidance on how traditional first-order sensitivity methods can be used to predict their effects. Unlike problems that deal with traditional cross-section uncertainty analysis, material density and composition-related problems are often characterized by constraints that do not allow arbitrary and independent variations of the input parameters. Their proper handling requires constrained sensitivities that take into account the interdependence of the inputs. This paper discusses how traditional unconstrained isotopic density sensitivities can be calculated using the adjoint sensitivity capabilities of the popular Monte Carlo codes MCNP6 and SCALE 6.2, and we also present the equations to be used when forward and adjoint flux distributions are available. Subsequently, we show how the constrained sensitivities can be computed using the unconstrained (adjoint-based) sensitivities as well as by applying central differences directly. Three distinct procedures are presented for enforcing the constraint on the input variables, each leading to different constrained sensitivities. As a guide, the sensitivity and uncertainty formulas for several frequently encountered specific cases involving densities and compositions are given. An analytic k∞ example highlights the relationship between constrained sensitivity formulas and central differences, and a more realistic numerical problem reveals similarities among the computer codes used and differences among the three methods of enforcing the constraint.