ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2022 ANS Winter Meeting and Technology Expo
November 13–17, 2022
Phoenix, AZ|Arizona Grand Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
September 2022
Nuclear Technology
Fusion Science and Technology
August 2022
Latest News
Next for nuclear: Energy arbitrage
Can nuclear power plants prosper in the grid of 2030 or 2035, when new wind and solar farms will make electricity prices even more volatile? Can plants install energy storage that will help them keep running at full power, 24/7, to ride out times of surplus and sell their energy only when prices are high?
Jim E. Morel, James S. Warsa, Brian C. Franke, Anil K. Prinja
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 325-334
Technical Paper | dx.doi.org/10.1080/00295639.2016.1272383
Articles are hosted by Taylor and Francis Online.
We compare two methods for generating Galerkin quadratures. In method 1, the standard SN method is used to generate the moment-to-discrete matrix and the discrete-to-moment matrix is generated by inverting the moment-to-discrete matrix. This is a particular form of the original Galerkin quadrature method. In method 2, which we introduce here, the standard SN method is used to generate the discrete-to-moment matrix and the moment-to-discrete matrix is generated by inverting the discrete-to-moment matrix. With an N-point quadrature, method 1 has the advantage that it preserves N eigenvalues and N eigenvectors of the scattering operator in a pointwise sense. With an N-point quadrature, method 2 has the advantage that it generates consistent angular moment equations from the corresponding SN equations while preserving N eigenvalues of the scattering operator. Our computational results indicate that these two methods are quite comparable for the test problem considered.