ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2022 ANS Winter Meeting and Technology Expo
November 13–17, 2022
Phoenix, AZ|Arizona Grand Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
September 2022
Nuclear Technology
Fusion Science and Technology
August 2022
Latest News
Next for nuclear: Energy arbitrage
Can nuclear power plants prosper in the grid of 2030 or 2035, when new wind and solar farms will make electricity prices even more volatile? Can plants install energy storage that will help them keep running at full power, 24/7, to ride out times of surplus and sell their energy only when prices are high?
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 263-276
Technical Paper | dx.doi.org/10.1080/00295639.2016.1272358
Articles are hosted by Taylor and Francis Online.
In axially heterogeneous fast reactor concepts, such as the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core, the accurate neutronic prediction of control rods is a challenge. In such cores, the performance of the classical two-dimensional (2-D) equivalence procedure, used for control rod homogenization in homogeneous fast reactors, is questionable.
In this work (part I of two companion papers), a number of axially heterogeneous environments, representative of a CFV-type core, are investigated using 2-D (X-Z) models, with the objective to distinguish regions where the classical equivalence procedure is valid from those where it is not.
It is found that the environments that affect the control rod absorber the most, and are likely to invalidate the procedure, are the internal control rod interfaces, such as the absorber/follower interface and the interface between zones of different boron enrichments. The range of the main spectral impact could be seen within 0 to 10 cm from the material interfaces studied.
In the companion paper (part II), a full-core investigation is performed that builds upon the results of this paper.