ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 263-276
Technical Paper | doi.org/10.1080/00295639.2016.1272358
Articles are hosted by Taylor and Francis Online.
In axially heterogeneous fast reactor concepts, such as the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core, the accurate neutronic prediction of control rods is a challenge. In such cores, the performance of the classical two-dimensional (2-D) equivalence procedure, used for control rod homogenization in homogeneous fast reactors, is questionable.
In this work (part I of two companion papers), a number of axially heterogeneous environments, representative of a CFV-type core, are investigated using 2-D (X-Z) models, with the objective to distinguish regions where the classical equivalence procedure is valid from those where it is not.
It is found that the environments that affect the control rod absorber the most, and are likely to invalidate the procedure, are the internal control rod interfaces, such as the absorber/follower interface and the interface between zones of different boron enrichments. The range of the main spectral impact could be seen within 0 to 10 cm from the material interfaces studied.
In the companion paper (part II), a full-core investigation is performed that builds upon the results of this paper.