ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 263-276
Technical Paper | doi.org/10.1080/00295639.2016.1272358
Articles are hosted by Taylor and Francis Online.
In axially heterogeneous fast reactor concepts, such as the Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core, the accurate neutronic prediction of control rods is a challenge. In such cores, the performance of the classical two-dimensional (2-D) equivalence procedure, used for control rod homogenization in homogeneous fast reactors, is questionable.
In this work (part I of two companion papers), a number of axially heterogeneous environments, representative of a CFV-type core, are investigated using 2-D (X-Z) models, with the objective to distinguish regions where the classical equivalence procedure is valid from those where it is not.
It is found that the environments that affect the control rod absorber the most, and are likely to invalidate the procedure, are the internal control rod interfaces, such as the absorber/follower interface and the interface between zones of different boron enrichments. The range of the main spectral impact could be seen within 0 to 10 cm from the material interfaces studied.
In the companion paper (part II), a full-core investigation is performed that builds upon the results of this paper.