ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 277-293
Technical Paper | doi.org/10.1080/00295639.2016.1272359
Articles are hosted by Taylor and Francis Online.
Advanced sodium-cooled fast reactors with improved safety features such as the French Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core concept are characterized by an axial heterogeneous core that will present a challenge for the homogenization procedures used today, taking into account all the different axial material transitions. Reliable modeling of the control rod and accurate prediction of the control rod worth are essential to determining the shutdown margins and to ensuring safe operation.
In this work (part II of two companion papers), two different homogenization schemes are compared. One is based on the traditional reactivity-equivalence procedure in two dimensions, and the other is a newly implemented three-dimensional (3-D) version of the reactivity-equivalence procedure, with approximations based on the results in the companion paper. The deterministic results are compared with a Monte Carlo reference.
Both cross-section sets from the two homogenization schemes yielded results within the requested ±5% error margin in reactivity. The largest discrepancy was found for the classical procedure for the case with a slightly inserted control rod (normal operating conditions). Both cross-section sets yielded similar power profiles in the fuel subassembly neighboring the control rod within the 2σ Monte Carlo standard deviation. Neither of the cross-section sets was able to predict the large gradients in capture rates close to the internal control rod interfaces.
The study showed that the traditional two-dimensional (2-D) reactivity-equivalence procedure produces homogenized cross sections that yield reliable results in a CFV-type core. One exception from this was found for slightly inserted control rods, where the effect of the follower-absorber interface could not be fully captured by the 2-D scheme, and for such cases, 3-D modeling is recommended.