ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
M. Andersson, D. Blanchet, H. Nylén, R. Jacqmin
Nuclear Science and Engineering | Volume 185 | Number 2 | February 2017 | Pages 277-293
Technical Paper | doi.org/10.1080/00295639.2016.1272359
Articles are hosted by Taylor and Francis Online.
Advanced sodium-cooled fast reactors with improved safety features such as the French Advanced Sodium Technological Reactor for Industrial Demonstration (ASTRID) CFV (French acronym of Coeur à Faible effet de Vide sodium, meaning low sodium void effect core) core concept are characterized by an axial heterogeneous core that will present a challenge for the homogenization procedures used today, taking into account all the different axial material transitions. Reliable modeling of the control rod and accurate prediction of the control rod worth are essential to determining the shutdown margins and to ensuring safe operation.
In this work (part II of two companion papers), two different homogenization schemes are compared. One is based on the traditional reactivity-equivalence procedure in two dimensions, and the other is a newly implemented three-dimensional (3-D) version of the reactivity-equivalence procedure, with approximations based on the results in the companion paper. The deterministic results are compared with a Monte Carlo reference.
Both cross-section sets from the two homogenization schemes yielded results within the requested ±5% error margin in reactivity. The largest discrepancy was found for the classical procedure for the case with a slightly inserted control rod (normal operating conditions). Both cross-section sets yielded similar power profiles in the fuel subassembly neighboring the control rod within the 2σ Monte Carlo standard deviation. Neither of the cross-section sets was able to predict the large gradients in capture rates close to the internal control rod interfaces.
The study showed that the traditional two-dimensional (2-D) reactivity-equivalence procedure produces homogenized cross sections that yield reliable results in a CFV-type core. One exception from this was found for slightly inserted control rods, where the effect of the follower-absorber interface could not be fully captured by the 2-D scheme, and for such cases, 3-D modeling is recommended.