ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
A. B. Wollaber, H. Park, R. B. Lowrie, R. M. Rauenzahn, M. A. Cleveland
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 117-129
Technical Paper | doi.org/10.13182/NSE16-45
Articles are hosted by Taylor and Francis Online.
Recent efforts at Los Alamos National Laboratory to develop a moment-based, scale-bridging [or high-order (HO)–low-order (LO)] algorithm for solving large varieties of the transport (kinetic) systems have shown promising results. A part of our ongoing effort is incorporating this methodology into the framework of the Eulerian Applications Project to achieve algorithmic acceleration of radiation-hydrodynamics simulations in production software. By starting from the thermal radiative transfer equations with a simple material-motion correction, we derive a discretely consistent energy balance equation (LO equation). We demonstrate that the corresponding LO system for the Monte Carlo HO solver is closely related to the original LO system without material-motion corrections. We test the implementation on a radiative shock problem and show consistency between the energy densities and temperatures in the HO and LO solutions as well as agreement with the semianalytic solution. We also test the approach on a more challenging two-dimensional problem and demonstrate accuracy enhancements and algorithmic speedups. This paper extends a recent conference paper by including multigroup effects.