ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Sherly Ray, S. B. Degweker, Rashmi Rai, K. P. Singh
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 473-494
Technical Paper | doi.org/10.13182/NSE15-127
Articles are hosted by Taylor and Francis Online.
The BOXER3 code was developed in the Bhabha Atomic Research Centre during the 1980s as a three-dimensional code for the analysis of a pressurized heavy water reactor supercell containing fuel, moderator, and a reactivity device inserted perpendicular to the fuel channel, with options for carrying out calculations in a general two-dimensional geometry (infinite and homogeneous in one direction) and a one-dimensional plane geometry. Taking into account the computing resources available then, the code was run in few groups after obtaining condensed group cross sections for various materials from a one-dimensional multigroup calculation.
In this paper, we describe various developments carried out recently for enabling its use as an assembly-level lattice-burnup code. In addition to the collision probability method originally available, the method of characteristics for solving the multigroup transport equation has been added. This development permits the treatment of anisotropic scattering wherever necessary and available in cross-section libraries. Other developments include coupling of the code to the WIMS 69/172-group library, a method for the evaluation of the pin-dependent Dancoff factor, and the introduction of burnup. The transport equation in the collision probability method is cast in a form more suitable for iterations as well as for the method of renormalization of collision probabilities used in the work. The analysis of several benchmark problems has been carried out and the results obtained using the new code are presented.