ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Richard Vasques, Kai Krycki, Rachel N. Slaybaugh
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 78-106
Technical Paper | doi.org/10.13182/NSE16-35
Articles are hosted by Taylor and Francis Online.
We investigate the accuracy of the recently proposed nonclassical transport equation. This equation contains an extra independent variable compared to the classical transport equation (the path length s), and models particle transport in homogenized random media in which the distance to collision of a particle is not exponentially distributed. To solve the nonclassical equation, one needs to know the s-dependent ensemble-averaged total cross section Σt(μ, s) or its corresponding path-length distribution function p(μ, s). We consider a one-dimensional (1-D) spatially periodic system consisting of alternating solid and void layers, randomly placed along the x-axis. We obtain an analytical expression for p(μ, s) and use this result to compute the corresponding Σt(μ, s). Then, we proceed to solve numerically the nonclassical equation for different test problems in rod geometry; that is, particles can move only in the directions μ = ±1. To assess the accuracy of these solutions, we produce benchmark results obtained by (i) generating a large number of physical realizations of the system, (ii) numerically solving the transport equation in each realization, and (iii) ensemble-averaging the solutions over all physical realizations. We show that the numerical results validate the nonclassical model; the solutions obtained with the nonclassical equation accurately estimate the ensemble-averaged scalar flux in this 1-D random periodic system, greatly outperforming the widely used atomic mix model in most problems.