ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Lightbridge to test uranium-zirconium fuel alloy in INL’s ATR
Lightbridge Corporation has fabricated samples of nuclear fuel materials made of an enriched uranium-zirconium alloy, matching the composition of the alloy that the company intends to use for its future commercial Lightbridge Fuel product. The fuel is designed to improve the performance, safety, and proliferation resistance of nuclear reactors, according to the company. The enriched coupon samples will now be placed into capsules for irradiation testing in Idaho National Laboratory’s Advanced Test Reactor.
Richard Vasques, Kai Krycki, Rachel N. Slaybaugh
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 78-106
Technical Paper | doi.org/10.13182/NSE16-35
Articles are hosted by Taylor and Francis Online.
We investigate the accuracy of the recently proposed nonclassical transport equation. This equation contains an extra independent variable compared to the classical transport equation (the path length s), and models particle transport in homogenized random media in which the distance to collision of a particle is not exponentially distributed. To solve the nonclassical equation, one needs to know the s-dependent ensemble-averaged total cross section Σt(μ, s) or its corresponding path-length distribution function p(μ, s). We consider a one-dimensional (1-D) spatially periodic system consisting of alternating solid and void layers, randomly placed along the x-axis. We obtain an analytical expression for p(μ, s) and use this result to compute the corresponding Σt(μ, s). Then, we proceed to solve numerically the nonclassical equation for different test problems in rod geometry; that is, particles can move only in the directions μ = ±1. To assess the accuracy of these solutions, we produce benchmark results obtained by (i) generating a large number of physical realizations of the system, (ii) numerically solving the transport equation in each realization, and (iii) ensemble-averaging the solutions over all physical realizations. We show that the numerical results validate the nonclassical model; the solutions obtained with the nonclassical equation accurately estimate the ensemble-averaged scalar flux in this 1-D random periodic system, greatly outperforming the widely used atomic mix model in most problems.