ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Researchers use one-of-a-kind expertise and capabilities to test fuels of tomorrow
At the Idaho National Laboratory Hot Fuel Examination Facility, containment box operator Jake Maupin moves a manipulator arm into position around a pencil-thin nuclear fuel rod. He is preparing for a procedure that he and his colleagues have practiced repeatedly in anticipation of this moment in the hot cell.
Wayne Arter, J. Guy Morgan, Samuel D. Relton, Nicholas J. Higham
Nuclear Science and Engineering | Volume 184 | Number 4 | December 2016 | Pages 561-574
Technical Paper | doi.org/10.13182/NSE15-23
Articles are hosted by Taylor and Francis Online.
Pathways-reduced analysis is one of the techniques used by the FISPACT-II nuclear activation and transmutation software to study the sensitivity of the computed inventories to uncertainties in reaction cross sections. Although deciding which pathways are most important is very helpful in for example determining which nuclear data would benefit from further refinement, pathways-reduced analysis need not necessarily define the most critical reaction, since one reaction may contribute to several different pathways. This work examines three different techniques for ranking reactions in their order of importance in determining the final inventory, comparing the pathways-based metric (PBM), the direct method, and a method based on the Pearson correlation coefficient. Reasons why the PBM is to be preferred are presented.