ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Randal S. Baker
Nuclear Science and Engineering | Volume 185 | Number 1 | January 2017 | Pages 107-116
Technical Paper | doi.org/10.13182/NSE15-124
Articles are hosted by Taylor and Francis Online.
Discrete ordinates transport packages from the Los Alamos National Laboratory are required to perform large computationally intensive time-dependent calculations on massively parallel architectures, where even a single such calculation may need many months to complete. While Koch-Baker-Alcouffe (KBA) methods scale well to very large numbers of compute nodes, we are limited by practical constraints on the number of such nodes we can actually apply to any given calculation. Instead, this paper describes a modified KBA algorithm that allows realization of the reductions in solution time offered by both the current and future architectural changes within a compute node.