ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
Peters
Latta
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
David L. Aumiller, Michael J. Meholic
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 441-452
Technical Paper | doi.org/10.13182/NSE16-41
Articles are hosted by Taylor and Francis Online.
An assessment of the predictive capability of Coolant Boiling in Rod Arrays–Integrated Environment (COBRA-IE) for critical heat flux (CHF) using the 2005 Groeneveld CHF lookup table is presented. The assessment was performed against 13 different open literature CHF experiments that were conducted over a wide range of conditions in various internal flow geometries. Overall, approximately 1300 data points were evaluated.
Different methodologies to quantify the uncertainty inherent in the CHF models are discussed in this paper. The simulation techniques, uncertainty methods, and results of two of the methods are provided. A discussion of the appropriate use of the CHF uncertainty methods is included. The results indicate that for the method associated with the largest uncertainty, the average measured/predicted value in CHF is 1.19, and the standard deviation is 0.62. For the second method, similar to the critical power ratio used for boiling water reactors, the average ratio is 0.98, and the standard deviation is 0.13. Finally, a method to translate between the methods is proposed and shown to be accurate. The use of this transformation could permit significant time and cost savings by allowing a single uncertainty assessment to serve two very different analytical needs.