ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
David L. Aumiller, Michael J. Meholic
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 441-452
Technical Paper | doi.org/10.13182/NSE16-41
Articles are hosted by Taylor and Francis Online.
An assessment of the predictive capability of Coolant Boiling in Rod Arrays–Integrated Environment (COBRA-IE) for critical heat flux (CHF) using the 2005 Groeneveld CHF lookup table is presented. The assessment was performed against 13 different open literature CHF experiments that were conducted over a wide range of conditions in various internal flow geometries. Overall, approximately 1300 data points were evaluated.
Different methodologies to quantify the uncertainty inherent in the CHF models are discussed in this paper. The simulation techniques, uncertainty methods, and results of two of the methods are provided. A discussion of the appropriate use of the CHF uncertainty methods is included. The results indicate that for the method associated with the largest uncertainty, the average measured/predicted value in CHF is 1.19, and the standard deviation is 0.62. For the second method, similar to the critical power ratio used for boiling water reactors, the average ratio is 0.98, and the standard deviation is 0.13. Finally, a method to translate between the methods is proposed and shown to be accurate. The use of this transformation could permit significant time and cost savings by allowing a single uncertainty assessment to serve two very different analytical needs.