ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Matthew Marzano confirmed as newest NRC commissioner
A nuclear engineer, former reactor operator, and nuclear navy educator earned U.S. Senate approval today to take a seat on the Nuclear Regulatory Commission.
Matthew Marzano was confirmed in a 50–45 vote in the Senate and steps into an existing five-year term that will expire June 30, 2028. He joins the five-member commission, which has been without a tiebreaker vote since June 2023, when Jeff Baran’s term expired.
Marzano brings more than a decade of industry experience both working in nuclear plants and advising energy policy on Capitol Hill.
Uuganbayar Otgonbaatar, Emilio Baglietto, Neil Todreas
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 430-440
Technical Paper | doi.org/10.13182/NSE16-9
Articles are hosted by Taylor and Francis Online.
The measurement of the steam generator feedwater mass flow rate is a dominant source of uncertainty in the nominal thermal power calculation of a plant. In this paper, mass flow rate measurement by means of an orifice plate is considered. Reynolds-averaged Navier-Stokes (RANS) simulation was performed using the computational fluid dynamics code STAR-CCM+ to quantify the representativeness uncertainty of mass flow rate measured in a dedicated experimental configuration. The representativeness uncertainty arises from applying the tolerance values prescribed by the International Organization for Standardization (ISO) standard in non-straight piping geometries. The simulation results were compared with the test results and the uncertainty bounds prescribed by the ISO standard, demonstrating the feasibility of applying RANS in an industrial setting for sub-1% uncertainty applications. The RANS results were also used to identify the variability in the measurement result with respect to the angular location of the pressure tap used in the flow rate measurement. Second, a large eddy simulation (LES) was performed on a straight piping configuration to simulate unsteady coherent flow shedding at the orifice plate. The spectral results of LES were compared with data from a test. The time-averaged LES results are within 0.1% of the value prescribed by the ISO standard. Direct comparison of the temporal spectrum of the LES result to the test data is not possible due to the measurement technique. This work is a part of a wider effort to develop a methodology to characterize, assess, and quantify representativeness uncertainty in performance indicator measurements of plants. Spatial, temporal, and modeling representativeness uncertainties are presented in this current work.