ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
Jan Peter Hessling
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 388-399
Technical Paper | doi.org/10.13182/NSE16-8
Articles are hosted by Taylor and Francis Online.
For evaluation of the uncertainty of nuclear power calculations, the Wilks approach has the appearance of an ideal tool. A conservatively estimated bound is obtained as the r’th most extreme model result, of a random sample of size determined by r. The methodology is noninvasive and simple and seems efficient and adequate. However, as this paper shows, these attributes come with a high price of large bias and substantial sampling variance. This jeopardizes its utilization as well as lowers its credibility and perceived efficiency. The unfortunate combination of random sampling and faithful estimation may result in a relative sampling uncertainty of the estimated bound(s) of no less than 100%. What is defined as credibility, i.e., the probability that the estimated bound is conservative relative to the true result, is well below the confidence relating the targeted bound(s) to the true result, which for the default application of the Wilks method translates into an expected failure rate of up to 10% (instead of 5%) of estimated bounds. To compensate for this deficit in credibility compared to the chosen level of confidence, adjustments of current practice are proposed. The application to modeling uncertainty is to be clearly distinguished from the original experimental sampling problem addressed by Wilks. Here, more is known but not utilized. A viable novel alternative based on so-called deterministic sampling with higher accuracy, precision, and efficiency will therefore be briefly discussed and illustrated.