ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Yousef M. Farawila, Donald R. Todd, Maurice J. Ades, José N. Reyes Jr.
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 321-333
Technical Paper | doi.org/10.13182/NSE16-24
Articles are hosted by Taylor and Francis Online.
Numerical solutions for transient fluid flow in nuclear systems often suffer from the effects of numerical diffusion and damping making the assessment of system stability rather difficult. Efforts for coping with this problem include research and development of algorithms with improved fidelity for stability calculations as they apply to particular problems. Benchmarking exercises in comparison with specially designed experiments are necessary to verify algorithmic fidelity and guide the development and adjustments of the algorithms. In this paper, an analytical approach is introduced where a simple model—an analogue—is constructed such that the basic instability mechanisms are represented in a form that lends itself to analytical solutions that are free from the diffusion and damping problems that plague finite volume algorithms. Direct conclusions can be made regarding the stability of a system in the case where the analogue closely resembles the system under study. However, when the system is too complex for direct assessment, the stability fidelity of numerical solutions can be assessed by comparing the numerical solution for the simple system with the analytical solution and using the comparison to quantify any damping effects and justify the application of the numerical method to the complex representation of the real system under study. The theoretical analysis is supported by reference to recent test data in the NuScale Integral System Test (NIST) facility representing a scaled-down NuScale module.