ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Yousef M. Farawila, Donald R. Todd, Maurice J. Ades, José N. Reyes Jr.
Nuclear Science and Engineering | Volume 184 | Number 3 | November 2016 | Pages 321-333
Technical Paper | doi.org/10.13182/NSE16-24
Articles are hosted by Taylor and Francis Online.
Numerical solutions for transient fluid flow in nuclear systems often suffer from the effects of numerical diffusion and damping making the assessment of system stability rather difficult. Efforts for coping with this problem include research and development of algorithms with improved fidelity for stability calculations as they apply to particular problems. Benchmarking exercises in comparison with specially designed experiments are necessary to verify algorithmic fidelity and guide the development and adjustments of the algorithms. In this paper, an analytical approach is introduced where a simple model—an analogue—is constructed such that the basic instability mechanisms are represented in a form that lends itself to analytical solutions that are free from the diffusion and damping problems that plague finite volume algorithms. Direct conclusions can be made regarding the stability of a system in the case where the analogue closely resembles the system under study. However, when the system is too complex for direct assessment, the stability fidelity of numerical solutions can be assessed by comparing the numerical solution for the simple system with the analytical solution and using the comparison to quantify any damping effects and justify the application of the numerical method to the complex representation of the real system under study. The theoretical analysis is supported by reference to recent test data in the NuScale Integral System Test (NIST) facility representing a scaled-down NuScale module.