ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
M. Jarrett, B. Kochunas, A. Zhu, T. Downar
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 208-227
Technical Paper | doi.org/10.13182/NSE16-51
Articles are hosted by Taylor and Francis Online.
The coarse-mesh finite difference (CMFD) method is one of the most widely used methods for accelerating the convergence of numerical transport solutions. However, in some situations, iterative methods using CMFD can become unstable and fail to converge. We present and evaluate three different modifications of the CMFD scheme that provide enhanced stability: multiple transport sweeps, artificial diffusion, and relaxing the flux update. We present the Fourier analysis on each of these schemes for an idealized problem to characterize the stability and rate of convergence for both fixed-source and fission-source problems. Comparisons of the effectiveness of these methods are also performed numerically for a variety of benchmark boiling water reactor and pressurized water reactor problems using the Consortium for Advanced Simulation of Light Water Reactors neutronics code MPACT. We demonstrate a means of stabilizing CMFD by modifying the diffusion coefficient to make the iteration behave more like the partial-current CMFD (pCMFD) method, which is unconditionally stable, and show through a sequence of numerical experiments that the CMFD method performs similarly to the pCMFD method for the selected benchmark problems. We also show, both theoretically and experimentally, that modifying the diffusion coefficient in the CMFD equations is similar to underrelaxing the scalar flux update. The theoretical and experimental results show that many of the known techniques for stabilizing CMFD are fundamentally very closely related.