ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Matthew Marzano confirmed as newest NRC commissioner
A nuclear engineer, former reactor operator, and nuclear navy educator earned U.S. Senate approval today to take a seat on the Nuclear Regulatory Commission.
Matthew Marzano was confirmed in a 50–45 vote in the Senate and steps into an existing five-year term that will expire June 30, 2028. He joins the five-member commission, which has been without a tiebreaker vote since June 2023, when Jeff Baran’s term expired.
Marzano brings more than a decade of industry experience both working in nuclear plants and advising energy policy on Capitol Hill.
Jean Tommasi, Maxence Maillot, Gérald Rimpault
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 174-189
Technical Paper | doi.org/10.13182/NSE16-4
Articles are hosted by Taylor and Francis Online.
In neutron chain systems with material symmetries, various k-eigenvalues of the neutron balance equation beyond the dominant one may be degenerate. Eigenfunctions can be partitioned into several classes according to their invariance properties with respect to the symmetry operations (mirror symmetries and rotations) keeping the material distribution in the system unchanged. Their calculation can be limited to a fraction of the system (sector) provided that innovative boundary conditions matching the symmetry classes are used, and whole-system eigenfunctions can then be unfolded from the solutions obtained over the sector. With power iteration as the method for searching k-eigenvalues, this use of the material symmetries to split the global problem into a variety of smaller-sized problems has several computational advantages: lower computation times and memory requirements, increased dominance ratios, lowered possible degeneracies in each subproblem, and possible parallel (separated) treatment of the subproblems. The implementation is discussed in a companion paper using diffusion and transport theories.