ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Nuclear energy for maritime shipping and coastal applications
The Boston-based Deon Policy Institute has published a white paper that examines the applications of nuclear energy in the maritime sector—specifically, floating nuclear power plants and nuclear propulsion for commercial vessels. Topics covered include available technologies, preliminary cost estimates, and a status update on the regulatory framework.
Unique opportunity: The paper points out that nuclear energy has the potential to benefit the shipping industry with high energy efficiency, lower operating costs, and zero carbon emissions. The report has a special focus on Greece, a nation that controls about 20 percent of the global commercial fleet and thus has an opportunity to take a leading role in the transition to nuclear-powered shipping.
Kevin John Connolly, Alexander J. Huning, Farzad Rahnema, Srinivas Garimella
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 228-243
Technical Paper | doi.org/10.13182/NSE15-105
Articles are hosted by Taylor and Francis Online.
A newly developed coupled neutronic–thermal-hydraulic method for prismatic high-temperature gas reactors (HTGRs) is presented with accompanying results for several prismatic core configurations and numerical sensitivity studies. The principal advantage of the new method is the determination of coupled, whole-core temperature and pin power distributions with reduced computational effort over other available codes. The coarse-mesh radiation transport method (COMET), which relies solely on radiation transport, is the component of the new method used to compute neutronic parameters. A three-dimensional unit-cell–based thermal fluids solver is used to compute steady-state thermal-hydraulic parameters. For both component methods, no geometric approximations or averaging schemes are necessary. Convergence of the neutronic and thermal-hydraulic components and the coupled method is discussed, and coupled analyses are presented. The calculation of whole-core solutions allows for unique insights not possible with limited domain tools such as computational fluid dynamics. Results from one such unique study, near-critical control rod movements, are presented in this paper. Comparisons between coupled and uncoupled analyses are also presented.