ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
M. P. Sharma, A. K. Nayak
Nuclear Science and Engineering | Volume 184 | Number 2 | October 2016 | Pages 280-291
Technical Paper | doi.org/10.13182/NSE15-112
Articles are hosted by Taylor and Francis Online.
The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube–type, heavy water–moderated and boiling light water–cooled natural circulation–based reactor. The fuel bundle of an AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18, and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passages called subchannels. The transition from single-phase to two-phase flow occurs in a reactor rod bundle with an increase in power. Two-phase flow regimes like bubbly, slug/churn, and annular flow are normally encountered in a reactor rod bundle. Prediction of the thermal margin of the reactor necessitates the determination of the turbulent-mixing rate of the coolant among these subchannels under these flow regimes. Thus, it is vital to evaluate turbulent mixing between the subchannels of an AHWR rod bundle.
In this paper, experiments were carried out to determine the two-phase turbulent-mixing rate in different flow regimes in the simulated subchannels of the reactor. The size of the rod and the pitch in the test were the same as those of an actual rod bundle in the prototype. Three subchannels are considered in 1/12th of the cross section of the rod bundle. Water and air were used as the working fluid, and the turbulent-mixing tests were carried out at atmospheric conditions without addition of heat. The void fraction was varied from 0 to 0.8 under various ranges of superficial liquid velocity. The turbulent-mixing rate was experimentally determined by adding tracer fluid in one subchannel and measuring its concentration in other subchannels at the end of the flow path. The test data were compared with existing models in the literature. It was found that none of the models could predict the measured turbulent-mixing rate in the rod bundle of the reactor.